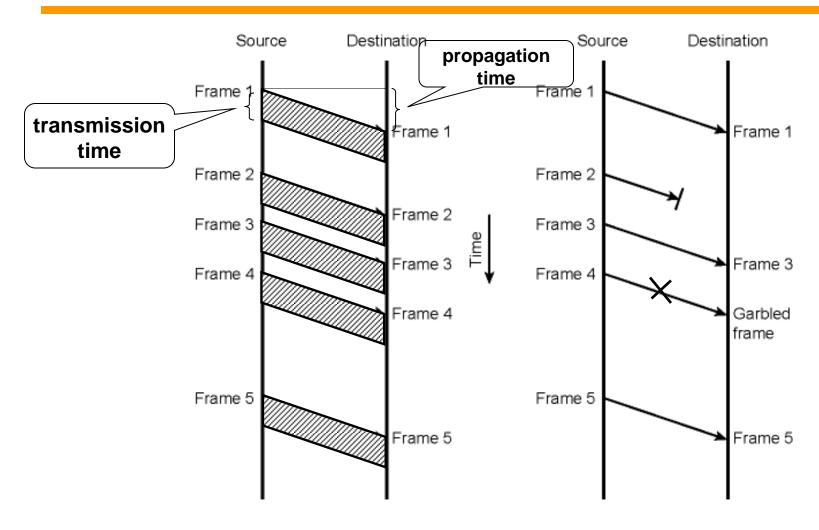
Data Link Control

Flow Control


- In Data Link Layer, we deal with issues related to point to point links
 - —Flow control is one of these issues

- Flow control is needed since the sending entity should not overwhelm the receiving entity
 - Recipient needs some time to process incoming packets
 - If sender sends faster than recipient processes, then buffer overflow occurs
 - flow control prevents buffer overflow

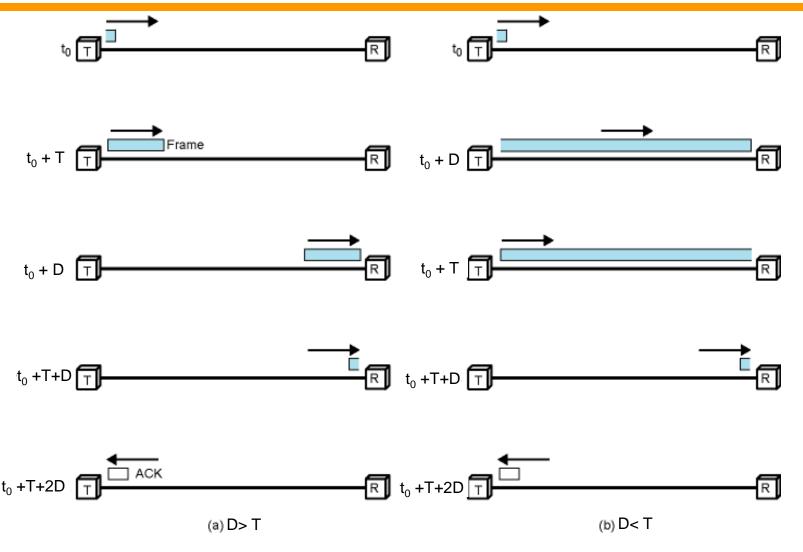
Performance Metrics and Delays (Section 5.3)

- Transmission time (delay)
 - —Time taken to emit all bits into medium
- Propagation time (delay)
 - —Time for a bit to traverse the link
- Processing time (delay)
 - time spent at the recipient or intermediate node for processing
- Queuing time (delay)
 - —waiting time at the queue to be sent out

Model of Frame Transmission

(a) Error-free transmission

(b) Transmission with losses and errors

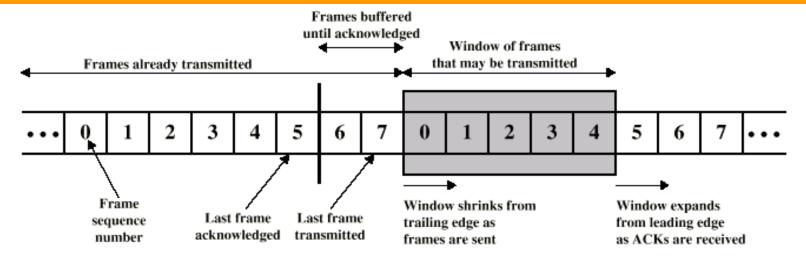

Stop and Wait Flow Control

- Source transmits frame
- Destination receives frame and replies with acknowledgement (ACK)
- Source waits for ACK before sending next frame
- Destination can stop flow by not sending ACK
- Works well for large frames
- Inefficient for smaller frames

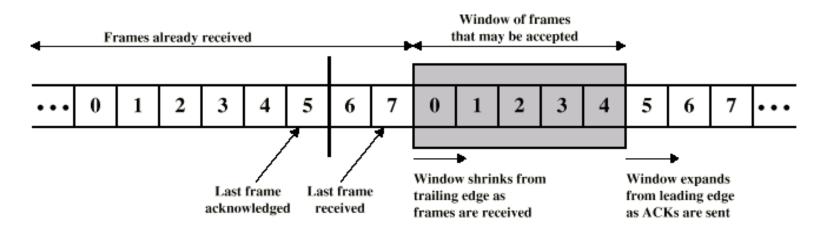
Stop and Wait Flow Control

- However, generally large block of data split into small frames
 - —Called "Fragmentation"
 - Limited buffer size at receiver
 - Errors detected sooner (when whole frame received)
 - On error, retransmission of smaller frames is needed
 - Prevents one station occupying medium for long periods
- Channel Utilization is higher when
 - —the transmission time is longer than the propagation time
 - —frame length is larger than the bit length of the link
 - —actually last two expressions mean the same
 - —see the derivations on board

Figure 5.6 Stop and Wait Link Utilization

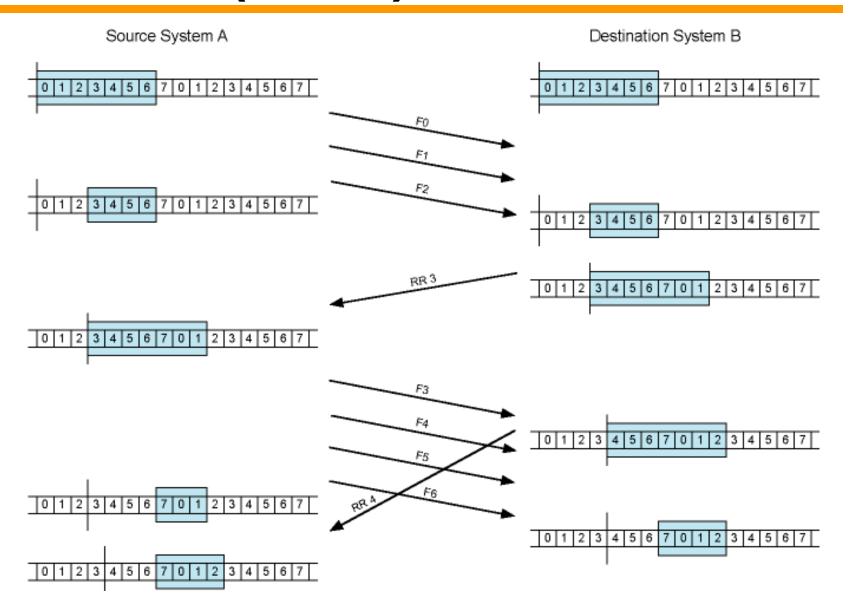


propagation time = D, transmission time = T


Sliding Window Flow Control

- The problem of "Stop and Wait" is not able to send multiple packets
- Sliding Window Protocol allows multiple frames to be in transit
- Receiver has buffer of W (called window size) frames
- Transmitter can send up to W frames without ACK
- Each frame is numbered
 - Sequence number bounded by size of the sequence number field (k bits)
 - thus frames are numbered modulo $2^{k}(0 \dots 2^{k-1})$
- ACK includes number of next frame expected

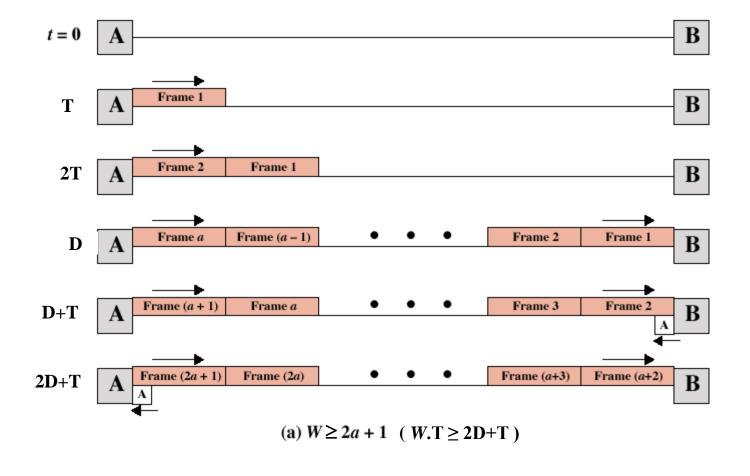
Sliding Window Flow Control (W = 7)



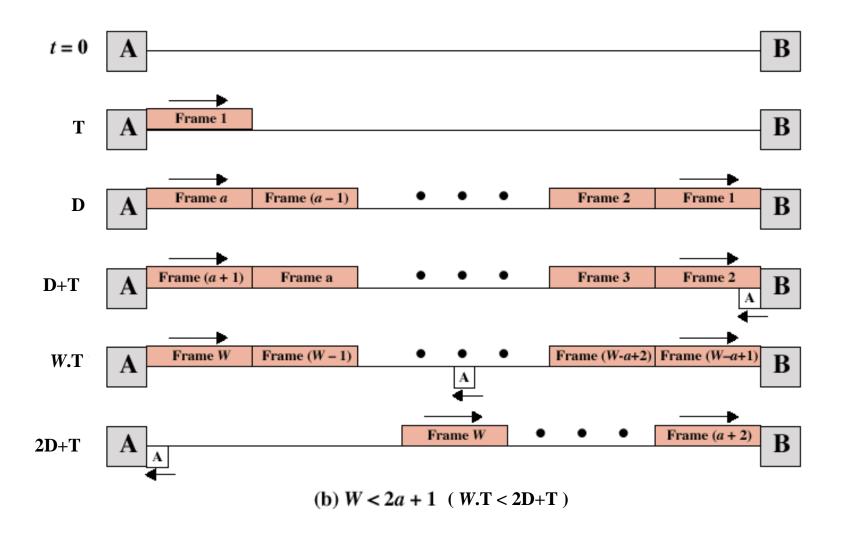
(a) Sender's perspective

(b) Receiver's perspective

Example of a Sliding Window Protocol (W = 7)



Sliding Window Enhancements in Implementation


- Receiver can acknowledge frames without permitting further transmission (*Receive Not Ready*)
 - —Must send a normal acknowledgement to resume
- If the link is duplex, use piggybacking
 - —Send data and ack together in one frame
 - frame has both data and ack fields
 - —If no data to send, use acknowledgement frame
 - If data but no acknowledgement to send, send last acknowledgement number again

Sliding Windows Performance - 1

- two cases: W >= 2a+1 and W < 2a+1, where a=D/T
- details are on board

Sliding Windows Performance - 2

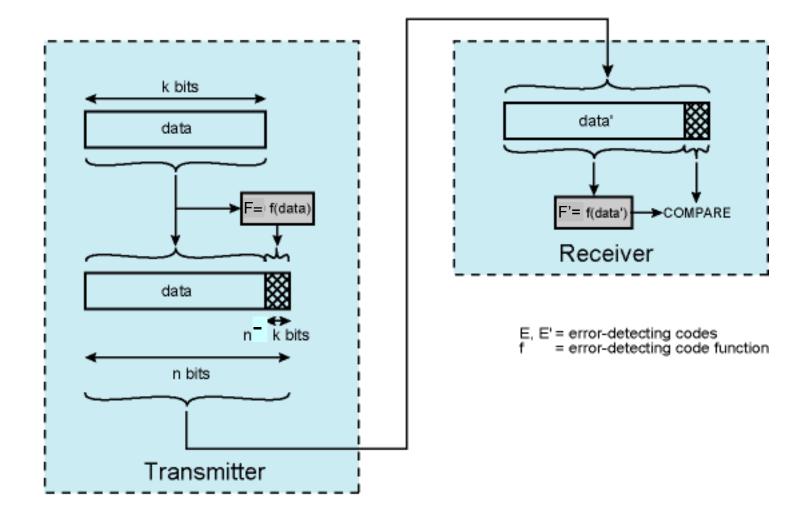
END OF MIDTERM EXAM

 The rest of this ppt file is not in the midterm exam coverage

Error Detection and Control

- So far we have seen flow control mechanisms where frames are transmitted without errors
 - —in real life any transmission facility may introduce errors
- So we have to
 - —detect errors
 - —if possible, correct errors (not in the scope of CS 408)
 - adopt flow control algorithms such that erroneous frames are retransmitted

Types of Errors


- Single bit errors
 - —isolated errors
 - —affects (flips) one bit, nearby bits are not altered
 - —not so common in real life
- Burst errors
 - —a sequence of bits are affected
 - —most common case
 - —a burst error of length *B* is a contiguous sequence of *B* bits in which the first and the last and some intermediate bits are erroneously flipped.
 - not necessarily all bits between the first and the last one

Error Detection

- Additional bits added by transmitter as error detection code
 - —receiver checks this code

- Parity
 - —single bit added to the end of the data
 - Value of parity bit is such that data and parity have even (even parity) or odd (odd parity) number of ones
 - Even number of bit errors goes undetected
 - thus not so useful

Error Detection Process using Cyclic Redundancy Check

Cyclic Redundancy Check (CRC)

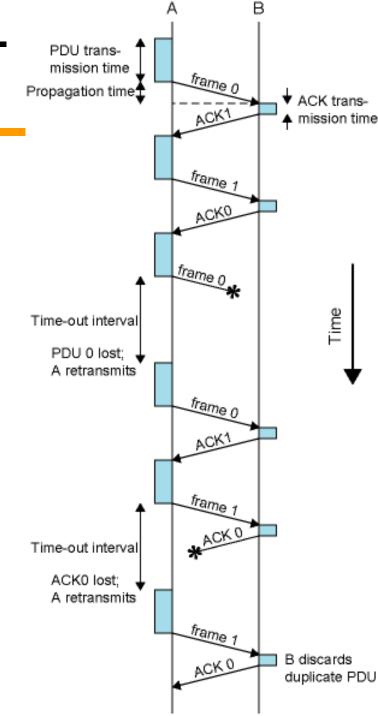
- For a data block of k bits, transmitter generates n-k bit frame check sequence (FCS) and appends it to the end of the data bits
- Transmits n bits, which is exactly divisible by some number (generator)
 - —the length of the generator is *n-k*+1 and first and last bits are 1
- Receiver divides the received frame by generator
 - —If no remainder, assume no error
- Division is binary division (not the same as integer or real division)
- See board for the math details and example

Cyclic Redundancy Check (CRC)

- Standard CRCs (generators are standard)
 - —checks all single, double and odd number of errors
 - checks all burst errors with length less than or equal to the length of FCS (n-k)
 - —checks most of the burst errors of longer length
 - for bursts of length n-k+1 (length of generator), probability of an undetected error is 1/2^{n-k-1}
 - for longer bursts, probability of an undetected error is 1/2^{n-k}

Error Control

- Actions to be taken against
 - —Lost frames
 - —Damaged frames
- Automatic repeat request (ARQ) mechanism components
 - —Error detection
 - —Positive acknowledgment
 - Retransmission after timeout
 - Negative acknowledgement and retransmission


Automatic Repeat Request (ARQ)

- Stop-and-wait ARQ
- Go-back-N ARQ
- Selective-reject (selective retransmission) ARQ

Stop and Wait ARQ

- Source transmits single frame
- Wait for ACK
- If received frame is damaged, discard it
 - If transmitter receives no ACK within timeout, retransmits
- If ACK damaged, transmitter will not recognize it
 - —Transmitter will retransmit after timeout
 - Receiver gets two copies of frame, but disregards one of them
 - —Use ACK₀ and ACK₁
 - ACK_i means "I am ready to receive frame i"

Stop-and-Wait ARQ – Example

Stop and Wait - Pros and Cons

- Simple
- Inefficient

Go-Back-N ARQ

- Based on sliding window
- If no error, ACK as usual with next frame expected
 - —ACK_i means "I am ready to receive frame i" and "I received all frames between i and my previous ack"
- Sender uses window to control the number of unacknowledged frames
- If error, reply with rejection (negative ack)
 - Discard that frame and all future frames until the frame in error received correctly
 - Transmitter must go back and retransmit that frame and all subsequent frames

Go-Back-N ARQ - Damaged Frame

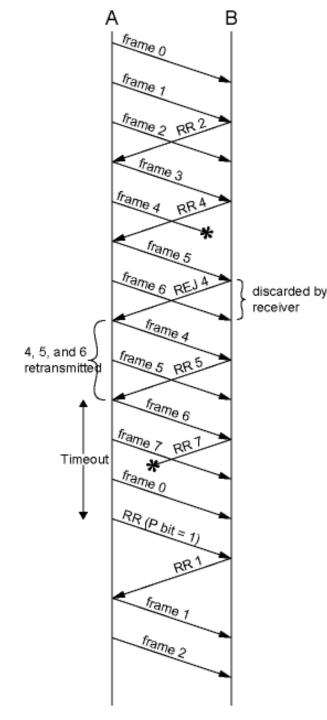
- Receiver detects error in frame i
- Receiver sends "reject i"
- Transmitter gets "reject i"
- Transmitter retransmits frame i and all subsequent frames

Go-Back-N ARQ - Lost Frame (1)

- Frame i lost
- Transmitter sends frame i+1
- Receiver gets frame i+1 out of sequence
- Receiver sends "reject i"
- Transmitter goes back to frame i and retransmits it and all subsequent frames

Go-Back-N ARQ- Lost Frame (2)

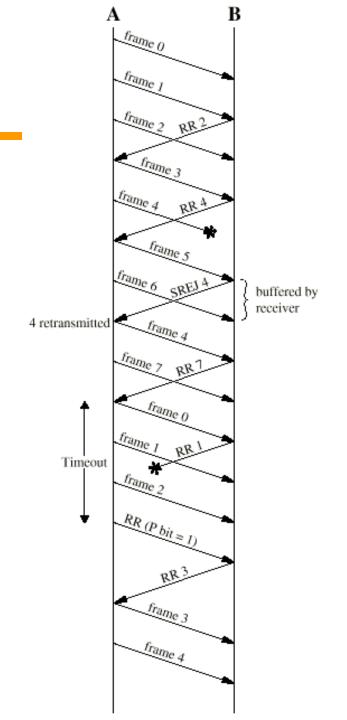
- Frame i lost and no additional frame sent
- Receiver gets nothing and returns neither acknowledgment nor rejection
- Transmitter times out and sends acknowledgment frame with P bit set to 1 (this is actually a command for ack request)
 - Receiver interprets this as an ack request command which it acknowledges with the number of the next frame it expects (i)
- Transmitter then retransmits frame i


Go-Back-N ARQ- Damaged/Lost Acknowledgment

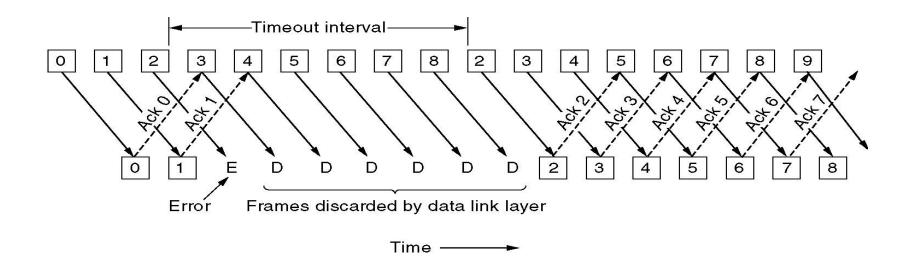
- Receiver gets frame i and sends acknowledgment (i+1) which is lost
- Acknowledgments are cumulative, so next acknowledgement (*i+n*) may arrive before transmitter times out on frame i
 - ==> NO PROBLEM
- If transmitter times out, it sends acknowledgment request with P bit set, as before

Go-Back-N ARQ- Damaged Rejection

- As in lost frame (2)
 - sender asks the receiver the last frame received and continue by retransmitting next frame


Go-Back-N ARQ - Example

Selective Reject


- Also called selective retransmission
- Only rejected frames are retransmitted
- Subsequent frames are accepted by the receiver and buffered
- Minimizes retransmissions
- Receiver must maintain large enough buffer
- Complex system

Selective Reject - Diagram

Issues

- RR with P=1 is from HDLC standard
 - —pure protocol just have retransmissions after timeout
 - as explained in Tanenbaum

Issues – Window Size

- Given n-bit sequence numbers, what is Max window size?
 - -go-back-n ARQ → 2ⁿ-1
 - Why?
 - what about receiver's window size?
 - It is 1, why?
 - -selective-reject(repeat) \rightarrow 2ⁿ⁻¹
 - Why?
- See the reasons on the board

Issues – Buffer Size

- Go-back-n ARQ
 - —sender needs to keep a buffer equal to window size
 - for possible retransmissions
 - receiver does not need any buffer (for flow/error control)
 - why?
- Selective reject
 - sender needs to keep a buffer of window size for retransmissions
 - —receiver keeps a buffer equal to window size

Issues - Performance

- Notes on board
- Appendix at the end of Chapter 14
 - —selective reject ARQ is not in the book

High Level Data Link Control

- HDLC
- ISO Standard
- Basis for some other DLL protocols

HDLC Station Types

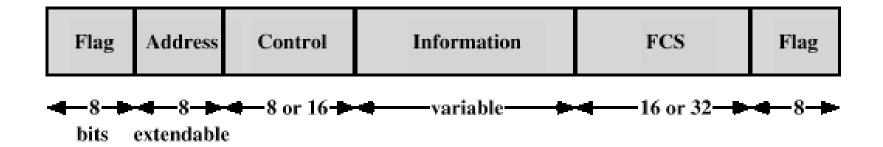
- Primary station
 - —Controls operation of link
 - —Frames issued are called commands
- Secondary station
 - —Under control of primary station
 - —Frames issued called responses
- Combined station
 - —May issue commands and responses

HDLC Link Configurations

- Unbalanced
 - —One primary and one or more secondary stations
 - —Supports full duplex and half duplex
- Balanced
 - —Two combined stations
 - —Supports full duplex and half duplex

HDLC Transfer Modes (1)

- Normal Response Mode (NRM)
 - Unbalanced configuration
 - Primary initiates transfer to secondary
 - Secondary may only transmit data in response to command from primary
 - —Terminal-host communication
 - Host computer as primary
 - Terminals as secondary
 - —not so common nowadays


HDLC Transfer Modes (2)

- Asynchronous Balanced Mode (ABM)
 - Balanced configuration
 - Either station may initiate transmission without receiving permission
 - —Most widely used

Frame Structure

- All transmissions in frames
- Single frame format for all data and control exchanges

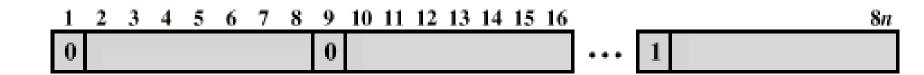
Frame Structure Diagram

Flag Fields

- Delimit frame at both ends
- 01111110
- Receiver hunts for flag sequence to synchronize
- Bit stuffing used to avoid confusion with data containing 011111110
 - —0 inserted after every sequence of five 1s
 - —If receiver detects five 1s it checks next bit
 - If 0, it is deleted
 - If 1 and seventh bit is 0, accept as flag
 - —If sixth and seventh bits 1, sender is indicating abort

Bit Stuffing Example

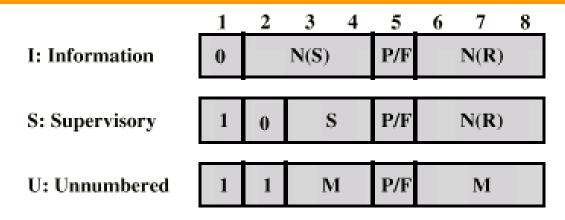
Original Pattern:


111111111111011111101111110

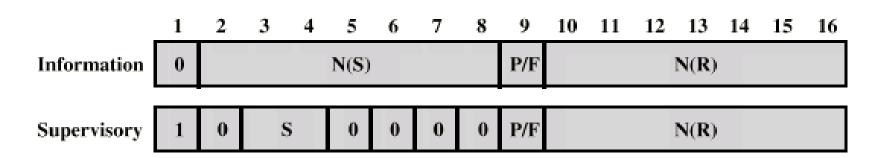
After bit-stuffing

11111011111011011111010111111010

Address Field


- Identifies secondary station that sent or will receive frame
- Usually 8 bits long (but 7 bits are effective)
- May be extended to multiples of 7 bits with prior agreement
 - leftmost bit of each octet indicates that it is the last octet (1) or not (0)

Frame Types


- Information data to be transmitted to user
 - Acknowledgment is piggybacked on information frames
- Supervisory ARQ messages (RR/RNR/REJ/SREJ) when piggyback not used
- Unnumbered supplementary link control functions. For examples,
 - —setting the modes
 - —disconnect
- Control field is different for each frame type

Control Field Diagram

N(S) = Send sequence number N(R) = Receive sequence number S = Supervisory function bits M = Unnumbered function bits P/F = Poll/final bit

(c) 8-bit control field format

(d) 16-bit control field format

Poll/Final Bit

- Use depends on context. A typical use is below.
- Command frame
 - —P bit set to 1 to solicit (poll) supervisory frame from peer
- Response frame
 - —F bit set to 1 to indicate response to soliciting command

Information Field

- Only in information and some unnumbered frames
- Must contain integral number of octets
- Variable length

Frame Check Sequence Field

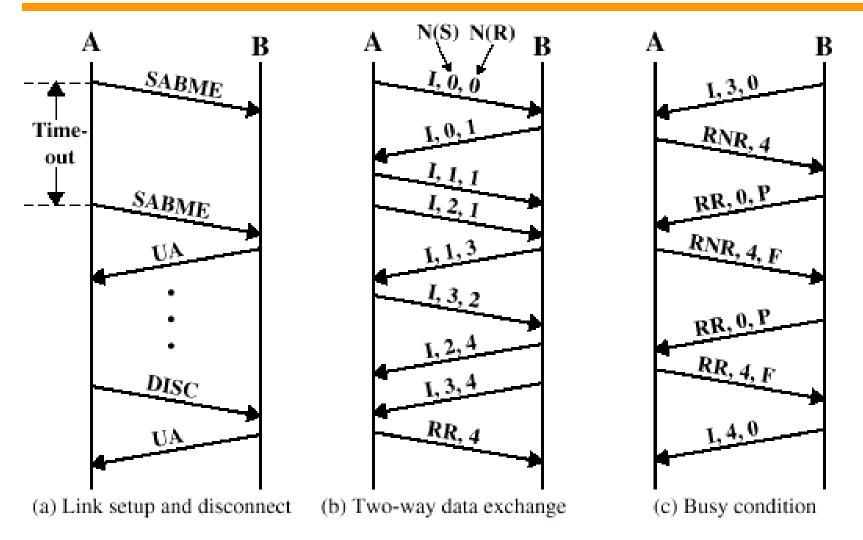
- FCS
- Error detection
- 16 bit CRC
- Optional 32 bit CRC

HDLC Operation

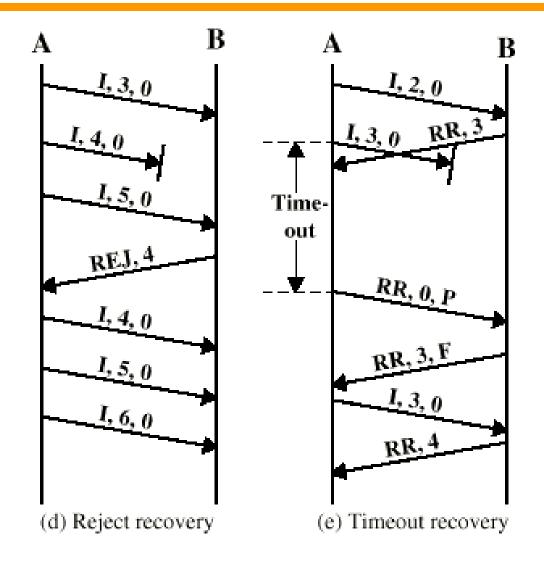
- Exchange of information, supervisory and unnumbered frames
- Three phases
 - —Initialization
 - —Data transfer
 - —Disconnect

Initialization

- Issue one of six set-mode commands
 - —Signals other side that initialization is requested
 - —Specifies mode (NRM, ABM, ARM)
 - —Specifies 3- or 7-bit sequence numbers
- If request accepted HDLC module on other side transmits unnumbered acknowledged (UA) frame
- If request rejected, disconnected mode (DM) sent
- All sent as unnumbered frames


Data Transfer

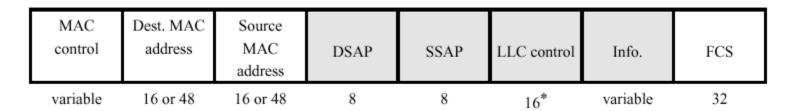
- Both sides may begin to send user data in I-frames
 - N(S): sequence number of outgoing I-frames
 - modulo 8 or 128, (3- or 7-bit)
 - N(R) acknowledgment for I-frames received
 - seq. number of I-frame expected next
- S-frames are also used for flow and error control
 - Receive ready (RR) frame acknowledges last I-frame received
 - Indicating next I-frame expected
 - Used when there is no reverse data
 - Receive not ready (RNR) acknowledges, but also asks peer to suspend transmission of I-frames
 - When ready, send RR to restart
 - REJ initiates go-back-N ARQ
 - Indicates last I-frame received has been rejected
 - Retransmission is requested beginning with N(R)
 - Selective reject (SREJ) requests retransmission of single frame


Disconnect

- Send disconnect (DISC) frame
- Remote entity must accept by replying with UA
 - Informs layer 3 user about the termination of connection

Examples of Operation (1)

Examples of Operation (2)



Other DLC Protocols (LAPB,LAPD)

- Link Access Procedure, Balanced (LAPB)
 - —Part of X.25 (ITU-T)
 - —Subset of HDLC ABM (Async. Balanced Mode)
 - Point to point link between user and packet switching network node
 - —HDLC frame format
- Link Access Procedure, D-Channel (LAPD)
 - —Part of ISDN (ITU-T)
 - -ABM
 - —Always 7-bit sequence numbers (no 3-bit)
 - —always 16-bit CRC
 - —16-bit address field

Other DLC Protocols (LLC)

- Logical Link Control (LLC)
 - IEEE 802
 - For LANs (Local Area Networks)
 - Link control split between medium access control layer (MAC) and LLC (on top of MAC)
 - Different frame format
 - Two addresses needed (sender and receiver) actually at MAC layer
 - Sender and receiver SAP addresses
 - Control field is same as HDLC (16-bit version for I and S frames; 8bit for U frames)
 - No primary and secondary all stations are peers
 - Error detection at MAC layer
 - 32 bit CRC

Other DLC Protocols (LLC)

- LLC Services
 - —3 alternatives
 - —Connection Mode Services
 - Similar to HDLC ABM
 - Unacknowledged connectionless services
 - no connection setup
 - No flow-control, no error control, no acks (thus not reliable)
 - good to be used with TCP/IP. Why?
 - Acknowledged Connectionless Service
 - No connection setup
 - reliable communication